Tavşan trakea düz kasında tetrodotoxsin, flekainid ve pilskikainidin pre-ve postsinaptik etkileri*

Ayşe Saide ŞAHİN, Hülya DALGIÇ, Mehmet KILIÇ, Necdet DOĞAN
SÜT.F.Farmakoloji Anabilim Dalı

ÖZET

In vitro şartlarda yapılan bu çalışmada, elektriksel alan stimülasyonu (EAS, 40-50 volt, 20 Hz, 1 ms) veya karbokal (10⁻⁶ M) uygulanarak kasılan tavşan trakea düz kasında sodyum kanal blokörleri tetrodotoxsin (TTX, 10⁻⁸ - 10⁻⁶ M), flekainid (10⁻⁶ - 3x10⁻⁴ M) ve pilskikainidin (10⁻⁶ - 3x10⁻⁴ M) pre- ve postsinaptik etki güçlerini karşılaştırılmış ve bu ajanların etkilerinde, epitelden sentezlenen nitrik oksit veya sikloksijenaz ürünlerinin rolü araştırılmıştır.

EAS ile oluşturulan kasılma cevapları kullanılan sodyum kanal blokörleri ile konsantrasyonuna bağlı olarak TTX > flekainid > pilskikainid olarak bulunmaktadır.

Bu çalışmada, TTX kullanılan konsantrasyon aralığında postsinaptik etki göstermemiştir. Buna karşın flekainid ve pilskikainid karbokal ile alınan kasılma cevaplarını inhibe etmiş ve flekainidin postsinaptik inhibitory etki gücü pilskikainide nazaran daha yüksek bulunmuştur. Postsinaptik gevşetici etkileri yarındaki ise flekainid ve pilskikainid arasında anlamlı bir fark bulunmamıştır.

Dokuların indometasin (10⁻⁶ M) veya L-NAME (10⁻⁴ M) ile inkübe edilmesi kullanılan sodyum kanal blokörlerinin pre- ve postsinaptik inhibitory veya gevşetici etkilerini değiştirmemiştir.

Sonuç olarak izole tavşan trakeasında yapılan bu çalışmada kullanılan sodyum kanal blokörüllerinden flekainid ve pilskikainidin hem presinaptik hem de postsinaptik etki ile trakea düz kasında geveşme oluşturdukları saptanmış, ayrıca bu ajanların pre- ve postsinaptik etkilerinde sikloksijenaz ürünler ve nitrik oksitin rolünü olmadığı ortaya konmuştur.

Anahtar Kelimeler: Tavşan trakeasi, tetrodotoxsin, flekainid, pilskikainid

SUMMARY

Pre- and Postsynaptic effects of tetrodotoxin flecainide and pilsciazone in the rabbit tracheal smooth muscle

The aim of this in vitro study was to investigate the inhibitory and relaxant effects of sodium channel blockers, tetrodotoxin (TTX, 10⁻⁸ - 10⁻⁶ M), flecainide (10⁻⁶ - 3x10⁻⁴ M) and pilsciazone (10⁻⁶ - 3x10⁻⁴ M), on both electrical field stimulation (EFS)- and carbachol-induced contractions in the rabbit trachea. In addition, the role of nitric oxide or cyclooxygenase products synthesized from epithelium in the pre- and postsynaptic effects of these agents was investigated.

EFS (20 sec at 40-50 V, 20 Hz, 1 msec) produced reproducible contractions in the tracheal strips. All of the sodium channel blockers used inhibited EFS-induced contraction in a concentration-dependent manner. The rank order of potency for inhibition of EFS-induced response was TTX > flecainide > pilsciazone. TTX did not influence the carbachol-induced contractions. Carbachol-induced contractions of tracheal strips were dose-dependently inhibited by preincubation with the other sodium channel blockers and flecainide was more potent than pilsciazone. However, in tracheal strips precontracted with carbachol, the relaxant effects of sodium channel blockers did not differ from each other. TTX, flecainide and pilsciazone did not alter the baseline tension. Preincubation with indomethacin or L-NAME altered neither the postsynaptic inhibitory and relaxant effects of the sodium channel blockers nor their inhibitory effects on EFS-induced contractions.

In conclusion, all sodium channel blockers used inhibited EFS-induced contractions of the rabbit trachea. Flecainide and pilsciazone inhibited carbachol-induced contractions while TTX did not influence them. Pre- and postsynaptic effects of the sodium channel blockers were not changed by indomethacin or L-NAME.

Key Words: Rabbit trachea, tetrodotoxin, flecainide, pilsciazone.
Solunum yolu düz kaslarının yoğun bir şekilde kolinerjik sinirlerle inerve edildiği ve kolinerjik sinir uçlarının salverilen asetikolinin ve eksojen olarak uygulanan diğer muskarinik ajanların bu yapılandırılması kasılma oluşturduğu bilinmektedir (1). Solunum yolları epitel hücrelerinde sentezlenen bazı biyoaktif madde ler de buradaki düz kasların bazal tonusunun ayarlanmasına ve çeşitli spazmojen madde lerle oluşan cevabin düzenlenmesinde rol oynamaktadır (2). Bronşiyal astma gibi bazı solunum yolu hastalıklarında ortaya çıkan bronkspazmin kolinerjik sinir aktivitesindeki artışa bağlı olduğu saptanmıştır (3) ve kolinerjik sinir uçlarından asetikolin salverilmesini bloke eden maddelerin, solunum yollarında kolinerjik sinir aktivitesinin artışı ile ortaya çıkan patolojik durumlarında kullanılabiliceği öne sürülmüştür (4).

Sodyum kanal blokörlerinin elektriksel alan stimülasyonu (EAS) uygulanan solunum yolu düz kaslarında kolinerjik sinir uçlarından asetikolin salverilmesini inhibe ettiği bilinmektedir (5). Sodyum kanal blokörü maddelerin presinaptik inhibitör etkilerinin yanı sıra eksjen muskarinik agonistlerle oluşan kasılma cevaplarını da postsinaptik düzeyde etkilediği gösterilmiştir (6).

Yapılan bu in vitro çalışmada EAS veya karbokol uygulanarak kasılan tavan trakea düz kasında sodyum kanal blokörü tetrodotoxsin (TTX), flekainid ve pilisikainidin pre- ve postsinaptik etki güçlü karışımların ve kullanılan bu ajanların etkilerinde epitele sentezlenen nitrik oksid ve sikloksijenaz ürünlerinin rolü araştırılmıştır.

MATERİAL VE METOD

Her iki seks ait Yeni Zelanda türü erişkin tavşanlar (2 - 2,5 kg) başlarına vuruşlar sersemletilip, a. carotisleri kesilerek suretyle öldürüldü. Trakea çıkarılınca besleyicili solüsyona alını ve hem biri iki düz kas içerisinde şekilde 3 mm eninde spiral şekiller hazırlandı. Dokular 37 °C’de Krebs-Henseleit solüsyonu içeren ve % 95 O₂ - % 5 CO₂ karışımı ile gazlandırılan 25 ml hacimli organ banyosu içinde alındı ve 1 g gerilim uygulanarak 60 dakika süreyle dinlendirildi. EAS uygulanan grupta dokular iki uçlu platin elektrot taşıyan organ tutucaga asıldı ve tek kanallı bir stimülatör (Harvard) kullanıldı. EAS veya karbokol uygulanarak alınan cevaplar izomtrik olarak osilografa (Harvard) kaydedildi. Deneylerde kullanılan Krebs-Henseleit solüsyonunun içeriği (mM) olarak şöyledir: NaCl 119; KCl 4.7; MgSO₄ 1.5; KH₂PO₄ 1.2; CaCl₂ 2.5; NaHCO₃ 25; glukoz 11.

Deneysel prosedür

Sodyum kanal blokörlerinin pre- ve postsinaptik inhibitör etki güçlerini araştırma amacıyla dokulara 20 saniye süreyle EAS (40-50 V, 20 Hz, 1 ms) uygulanarak veya 10⁻⁶ M karbokol verirerek kontrol kasıma cevapları alındı. 40 ve 50 voltta uygulanan iki stimülasyon arasında 5 dakika interval bırakıldı. Dokular 15 dakika aralıklarla besleyici solüsyonla yıkanarak 45 dakika süreyle dinlendirildi. TTX (10⁻⁸ - 10⁻⁶ M), flekainid (10⁻⁶ - 3x10⁻⁴ M) veya pilisikainid (10⁻⁶ - 3x10⁻⁴ M) en küçük dozu ilave edilerek 10 dakika süreyle inkübasyon yapıldı. Bu işlemlerden sonra EAS veya karbokol uygulanarak kasıma cevapları tekrarlandı. Sodyum kanal blokörleri tek doz halinde uygulandı ve bir üst doz verilmelden önce dokular 20 dakika süreyle besleyici solüsyonla yıkanarak dinlendirildi. Ön çalışmalarda, belirlenen bu dinlenme süresinin sodyum kanal blokörleriyle oluşan blokajın tamamen ortadan kalkması için yeterli olduğu saptandı.

Sodyum kanal blokörlerinin geçişici etkilerinin artırıldığı bölünde ise dokular 10⁻⁶ M karbokol ile kasıldı. Maksimum kararlı amplitüde ulaşıldıktan sonra ortama kümülatif tarzda TTX (10⁻⁸ - 10⁻⁶ M), flekainid (10⁻⁶ - 3x10⁻⁴ M) veya pilisikainid (10⁻⁶ - 3x10⁻⁴ M) ilave edildi.

Diğer çalışma gruplarında ise, sodyum kanal blokörlerinin pre- ve postsinaptik etkilerinin oluşmasında trakea epitel hücrelerinden salverilidiği bilinen (7,8) nitrik oksit ve prostaglandinlerin modülatör rolü araştırıldı. Bu amaçla daha önce de belirtilildiği gibi, EAS veya karbokol uygulanarak yapılan bu çalışmalar, sikloksijenaz inhibitörü indometasin (10⁻⁶ M) ile 20 dakika veya nitrik oksit sentez inhibitörü NG^-nitro-L-arginin metil ester (L-NAME, 10⁻⁴ M) ile 10 dakika süreyle inküb edilen dokulara da tekrarlandı.

İstatistik

Sodyum kanal blokörlerinin pH₅₀ (log IC₅₀) değerleri ile % maksimum inhibitör veya geçişici etkileri hesaplanarak veriler ortalamada ± standart hata (SH) şeklinde belirtilti. Iki ortalama arasındaki farkın istatistiksel analizi için Student’tın t testi (9), ikiden
fazla ortalama arasındaki farkın istatistiksel analiz için ise tek yönlü ANOVA testi kullanıldı. Tek yönlü ANOVA sonucunun anlamlı olduğu durumlarda, çoklu karşılaştırma testi olarak Tukey-HSD kullanıldı. p<0.05 olması durumunda ortalamalar arasındaki fark anlamlı kabul edildi.

İlaçlar:
TTX (Sigma), flekainid (Elseri Co. Ltd.), piliskainid (Suntary Ltd.), indometasin (Sigma), L-NAME (Sigma), karbokal (Sigma), atropin (Sigma), indometasinin stok solüsyonu (10-4) etanole hazırlanı ve alt dilüsyonları distile su ile yapıldı. Diğer ilaclar distile suda eritildi.

BULGULAR
Presinaptik inhibitör etki

EAS (40-50 V, 20 Hz, 1 ms) uygulanan tavşan trakea düz kasında elde edilen kasılma cevaplarının tekrarlanabilir nitelikle olduğu, zamanla bağlı değişme görülmediği ve bazal tonusunun etkilenmediği saptanmıştır. Stimülasyon Joulu kasılma cevaplarının kolinerjik squirrel uclarından salverilen asetilkolinle bağlı olup olmadığını araştırmak amacıyla dokular 10-6 M atropin ile 10 dakika süreyle inhibe edilmiş ve bu uygulamanın stimülasyonla elde edilen cevapları tam olarak inhibe ettiği saptanmıştır.

Kümülatif tarzda ilave edilen TTX (10-8 - 10-6 M), flekainid (10-6 - 3x10-4 M) ve piliskainid (10-6 - 3x10-4 M) ile kasılma cevapları doza bağımlı tarzda ve tam olarak inhibe edilmiş (Şekil 1). Belirtilen ajanlar için bulunan % maksimum inhibisyon ve plC50 değerleri Tablo 1'ıde gösterilmiştir. Kullanılan sodyum kanal blokörleri ile hesaplanan plC50 değerleri karşılaştırıldığında, presinaptik inhibitör etki yönelinden en etkili ajanın TTX olduğu saptanmış ve flekainid ise piliskainiden daha etkili bulunmuştur (p<0.01). İndometasin (10-6 M) ya da L-NAME (10-4 M) ile inhibe edilen dokulara EAS ile oluşan kasılma cevaplarının kontrol cevaplarından farklılık olduğu saptanmıştır ve kullanılan sodyum kanal blokörlerinin bu cevaplar üzerine olan inhibitör etki gücüleri değişmiştir.

Postsinaptik inhibitör etki

Tavşan trakea strüplerinde 10-6 M karbokal ile l(center)=syle kasılma cevapları oluşmuş ve zamanla bağlı şekilde b=ağ etmektedir. Dokuların TTX ile inhibe edilmesi karbokal ile oluşan kasılma cevaplarını etkilememiştir. Buna karşın, flekainid ve piliskainid ile inhibe edilen dokuları karbokal ile oluşan kasılma cevapları konsantrasyona bağımlı olarak inhibe edilmiş (Şekil 2) ve plC50 ve % maksimum inhibitör etkileri yönünün flekainidin daha etkili olduğu saptanmıştır (p<0.05, Tablo 2). İndometasin ve L-NAME ile inhibe edilen dokuları karbokal ile alınan kasılma cevapları aynı dokuda alınan kontrol kasılma cevaplarından farklılık bulunmuştur. Ortamda indometasin ve L-NAME bulansı durumunda bu iki sodyum kanal blokörünün postsinaptik inhibitör etki güçleri değişmemiştir.

Postsinaptik gevişetici etki

Karbokal ile kasılan dokulara kümulatif olarak uygulanan TTX gevişeme yapmamıştır. Buna karşın or-

Tablo 1. Tavşan trakea düz kasında EAS (50V, 20 Hz 1 ms) ile oluşan kasılma cevaplarının inhibisyonunda TTX, Flekainid ve Piliskainid için bulunan % Max. inhibisyon ve plC50 değerleri (ortalama±s).**

<table>
<thead>
<tr>
<th>Antagonist</th>
<th>TTX (10-8 - 10-6 M)</th>
<th>Flekainid (10-6 - 3x10-4 M)</th>
<th>Piliskainid (10-6 - 3x10-4 M)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Max. inhibisyon (n=7)</td>
<td>99±0.095</td>
<td>98±0.111</td>
<td>98±0.095</td>
<td>>0.05</td>
</tr>
<tr>
<td>plC50 (n=7)</td>
<td>7.699±0.089</td>
<td>5.295±0.151</td>
<td>4.684±0.065</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

* Çoklu karşılaştırıma (Tukey-HSD) göre, her üç grupta birbirinden farklıdır.

Tablo 2. Tavşan trakea düz kasında Karbokal (10-6 M) ile oluşan kasılma cevaplarının inhibisyonunda Flekainid ve Piliskainid için bulunan % Max. inhibisyon ve plC50 değerleri (ortalama±s).**

<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Flekainid (10-6 - 3x10-4 M)</th>
<th>Piliskainid (10-6 - 3x10-4 M)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Max. inhibisyon (n=7)</td>
<td>98±0.031</td>
<td>70±5.250</td>
<td><0.05*</td>
</tr>
<tr>
<td>plC50 (n=7)</td>
<td>4.494±0.064</td>
<td>3.856±0.124</td>
<td><0.05*</td>
</tr>
</tbody>
</table>

* Student t testine göre, her iki grupta birbirinden farklıdır.
Tablo 3. Tavşan trakea düz kasında Karbokal (10⁻⁶ M) ile oluşan kasıma cevaplarının inhibisyonunda Flekainid ve Pilisikainid için bulunan % Max. inhibitönlük değer ve plC₅₀ değerleri (ortalama ±sh).

<table>
<thead>
<tr>
<th>Antogonist</th>
<th>Flekainid</th>
<th>Pilisikainid</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Max. geväşeme (n=7)</td>
<td>99±0.047</td>
<td>99±0.063</td>
<td>>0.05</td>
</tr>
<tr>
<td>plC₅₀ (n=7)</td>
<td>4.485±0.213</td>
<td>4.791±0.124</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

tama kümülatif olarak flekainid veya pilisikainid ilave edilmesi konsantrasyona bağlı olarak geväşeme oluşturmuştur (Şekil 3). Bu bölümde plC₅₀ ve maksimum geväşetici etkileri yönünden flekainid ve pilisikainid arasında anlamlı bir fark bulunmamıştır (Tablo 3). Dokulun indometasin veya L-NAM ile inküb edilmesi kullanılan sodyum kanal blokörlerinin postsinaptik geväşetici etki güçlerini değiştirmemiştir. Sodyum kanal blokörleri dokunun bazal tonusunu da etkilememiştir.

İndometasin ile yapılan çalışmalarda, bu maddeyi etkime için kullanılan etanolun yanılsı konsantrasyonu ile yapılan solven kontrol denemelerinde solvene ait bir etki gözlemememiştir.

TARTIŞMA

Şekil 1. Tavşan trakea düz kasında EAS (50V, 20Hz, 1ms) ile oluşan kasılma cevapları üzerine tetrodotoksini, flekainid ve pilskainidin inhibitör etkileri.
(n:7, dikey çubuklar standart hata (SH)'yi göstermekteidir)

Şekil 2. Tavşan trakea düz kasında karbokol (10⁻⁶M) ile oluşan kasılma cevapları üzerine flekainid ve pilskainidin inhibitör etkileri.
(n:7, dikey çubuklar standart hata (SH)'yi göstermekteidir)

Şekil 3. Tavşan trakea düz kasında karbokol (10⁻⁶M) ile oluşan kasılma cevapları üzerine flekainid ve pilskainidin gevşetici etkileri.
(n:7, dikey çubuklar standart hata (SH)'yi göstermekteidir)
fonksiyon gören diğer bazı mekanizmaları da aktive etmesine bağlı olabilir.

Diğer düz kası yapılarında olduğu gibi trakea preparatlarında oluşan kasılma cevaplardında da sıtosoldeki serbest kalsiyum iyonları aracılık etmektedir (17) ve ekstraselüler veya intraselüler sodyum kon-
santrasyonundaki değişimler sitoselazmik serbest kalsiyum düzeyini etkilemektedir (18). Nitekim kobay
trakeasında yapılan bir çalışmadı, belirleyici solüsyonda sodyum iyonu kontrasantrasyonu
azaltıldığında asetilkolın, histamin ve serotonin ile alanın kasımları kontrol cevaplara göre daha
kült olduğu saptanmıştır (19). Ayrıca, cıvılcık trakeasında yapılan bir çalışmada, lokal anestezik olara-
rak kullanılan bir grup sodyum kanal blokörü denlenmiş ve bu maddekle eksojen olarak uygulanan
asetikolinkin oluşmuş kasılma cevaplarını inhibe ettiği saptanmıştır (6). Araştırmalar, lokal anesteziklerin,
hücre membranında depolarizasyondan sorumlu olan sodyum kanallarını bloke ederek membranı sta-
bilize ettiklerini ve asetikolin yada karboksul gibi ajan-
lara karşı membranın eksitabilitelerini azaltıklarını be-
lirtmişlerdir.

Epitelde oluşan PGE2, PGI2 ve nitrik oksit gibi endojen maddeker sonunun yolu düz kasıları
cevşettiği ve ayrıca kasıcı ya da gevşetici ajanlara
verilen cevabin düzenlenmesinde de rol oynadığı bi-
llinktedir (2). Sodyum kanal blokörlerinin inhibitör
veya gevşetici etkilerinde prostaglandiler ve nit-
rikoksitin modülatör rolünü artırarak amacyla sik-
looksijenaz inhibitörü indometasin ya da nitrik oksit
sentetaz inhibitörü L-NAME ile de çalışılabilir.

İndometasin veya L-NAME ile yapılan inkübasyonu
dokuların bazal tonusunda bir değişme olmadiği ve
inkübasyonun bitiminde EAS veya karboksul alınan
kasımların kontrol cevaplardan farksız olduğu görülmüştür. Ayrıca dokuların indometasin
veya L-NAME ile inküb edilmiş kullanlan sodyum
kanal blokörlerinin pre- ve postsinaptik inhibitör ve
gevşetici etkilerini değiştirmemiştir.

Sonuç olarak, izole tavşan trakeal düz kasında
yapılan bu çalışmada, kullanılan sodyum kanal
blokörü ajanlardan flekaind ve pilsikaindinin pre-
sinaptik inhibitör etkilerine ilaveten postsinaptik in-
hitör ve gevşetici etkilerinin de olduğu saptanmış
ve bu ajanların pre- ve postsinaptik etkilerinde siki-
looksijenaz ürleri ve nitrik oksitin rolünü olmadığı
ortaya konmuştur. Ancak bu ajanların sonunun yolu
hastalıklarının tedavisi ve kullanlabilişleri için
yana ileri çalışmaların yapılması gerekmektedir.

KAYNAKLAR

1. Richardson JB. Nerve supply to the lungs. Amer Rev
Respir Dis, 1979; 119: 785-802.
Possible role of airway epithelium in modulating hyper-
3. Barnes PJ. Cholinergic control of airway smooth musc-
4. Aizawa H, Miyazaki N, Tomooka M, Ejima T, Shi-

gematsu N. Azelastine inhibits acetylcholine release
K, Satake T, et al. Effects of sodium channel blockers
on electric field stimulation-induced guinea-pig trac-

heal smooth muscle contraction. Arc Int Pharmacodyn,
6. Wali FA. Local anaesthetics inhibit cholinergic and non-
cholinergic neural and muscular contractions in avian
7. Raeburn D. Eicosanoids, epithelium and airway re-
8. Orehek J, Douglas JS, Bouhuys A. Contractile re-
sponses of the guinea-pig trachea in vitro. Modification
by prostaglandin synthesis inhibiting drugs. J Phar-
macol Exp Ther, 1975; 194: 554-64.
9. Goldstein A. Biostatistics and introductory text. New
10. Taylor SM, Pare PD, Schellenberg RR. Cholinergic
and nonadrenergic mechanisms in human and guinea
11. Gershon MD. Effects of tetrodotoxin on innervated
smooth muscle preparations. Br J Pharmacol Chem,
blockade of sodium channels by flecainide in rabbit car-
diac purkinje fibres. Naunyn-Schmiedeberg's Arch Phar-
macol, 1990; 341: 565-76.

